PhD defence of Juhi Sharma

14 October 2021

Juhi Sharma defends her PhD in Numerical Mechanics and Materials on October 22, 2021

Microstructural evolutions during hot forging of VDM Alloy 780: mechanisms, kinetics and mean field modelling

Juhi Sharma conducted her PhD work in MSR team, under the supervision of Nathalie Bozzolo et Charbel Moussa. She defends her PhD in Numerical Mechanics and Materials on Oct. 22nd, 2021 in front of the following jury:

  • Pr. RAE Catherine (Univ. of Cambridge – Materials Science and Metallurgy, Royaume-Uni)
  • Pr. KESTENS Leo (Ghent Univ. Technologiepark Zwijnaarde, Belgique)
  • Pr. BERNACKI Marc (MINES ParisTech-CEMEF, Sophia Antipolis)
  • I.R. GEHRMANN Bodo (VDM Metals international, Altena, Germany)

Abstract:

The demand to reduce the emission levels in aircraft engines has motivated the development of new high temperature alloys. VDM Alloy 780 is a new polycrystalline nickel-based superalloy, developed for turbine disc applications, with higher service temperatures up to 750°C. VDM Alloy 780 comprises of γ′ strengthening phase, in addition to the grain boundary plate-like precipitates which are identified as η/δ phase (mostly η phase but likely to include thin δ layers). A precise evaluation of the microstructural evolutions during the multistep industrial forging operations is crucial to the final properties of the alloy. Through a series of isothermal heat treatments, microstructural analyses, advanced EBSD techniques and electrical resistivity measurements, a detailed description of the precipitation behavior, associated precipitate shape and size evolutions as well as the grain growth kinetics were obtained. Hot compression tests were designed in accordance with the industrial forging conditions to determine the recrystallization mechanisms and kinetics in the supersolvus domain. The dynamic and post-dynamic recrystallization kinetics were established in function of the thermomechanical parameters such as strain, strain rate, temperature and post-deformation holding time. A mean field model was calibrated based on those experimental results and proved to be capable of correctly predicting the microstructural evolutions in the single-phase domain. In addition, the influence of the second phase particles on the recrystallization behavior in the subsolvus domain was investigated. This work provides guidelines to optimize the industrial forging conditions for this new superalloy to obtain a homogenous and fine-grained microstructure.

Keywords: Polycrystalline nickel-based superalloys, hot forging, recrystallization, grain growth, precipitation, mean field modelling

 

 

Découvrir les autres actualités liées

Great news: Marion Négrier is among the 34 winners of the 19th L'Oréal-UNESCO for Women In Science France Young Talents award. Tomorrow, Wednesday, she will take to the stage to receive her trophy […]
Mekki Gaddacha Guizani, finalist for the SAMPE Europe Award - Doctoral Student Category Mekki Gaddacha Guizani had the honor of competing in the 40th Students Seminar 2025, organized as part of […]
Multiphysics modeling of AM and characterization of material laws at high-T° to link process, structure, and properties at various scale Yancheng ZHANG defends his HDR on oct. 9, 2025 at INSA […]
Upcycling Orange Waste into Porous Carriers for Organic Phase Change Materials Lais Taguchi Possari carried out her doctoral research under the supervision of Tatiana Budtova, S&P team […]
Pectin-based aerogels for thermal superinsulation Eleni Effraimopoulou conducted her doctoral research under the supervision of Tatiana Budtova, S&P team, and Arnaud Rigacci, PERSEE Mines […]
This second ERC grant opens up new challenges for Elie Hachem and the CFL team! A return to March 2022 is necessary to understand today's news. First an ERC Consolidator in 2022 In March […]