PhD defence Prashanth Thirunavukkarasu

4 March 2021

Prashanth Thirunavukkarasu defends his PhD in Numerical Mechanics and Materials on March 31, 21

Analysis of the interfacial flow behavior of polymers along the walls of an internal mixer
 
 
Prashanth Thirunavukkarasu completed his thesis within the CFL team, under the supervision of Edith Peuvrel-Disdier and Rudy Valette. His PhD work was funded by Michelin.
 
Abstract:
 
The internal mixing process is crucial to the manufacturing of rubber compounds as it is instrumental to the final properties of the product. Understanding the interfacial phenomena during mixing is crucial to the evaluation of the process, determination of process parameters and numerical prediction of the same. These phenomena include wall slip, adhesion and movement of free surfaces. The evolution of wall slip velocities was characterized with classical indirect rheological techniques. An eccentric counter-rotating Couette cell was designed and developed during this PhD to observe the free surfaces of viscous fluids under shear flow in steady-state conditions. A small volume of silicone fluid was used to study the flow behavior and observe the free surfaces in counter-rotating conditions. Steady state conditions were investigated for different conditions of cylinder velocities, volumes of fluid, surface roughness and nature of cylinder surfaces. The contribution of the adhesion energy to the stabilization velocities appears to be negligible. Finally, the influence of shear flow on the movement and shape of free surfaces was explored with the help of finite element method. Numerical simulations with the integration of an adhesion boundary condition show a clear effect of the adhesion energy on the free surface shape and movement. But the level of adhesion energy necessary in the case of viscous fluids was found to be far too high to be observed experimentally.
 
Keywords: Internal mixing, Rubber, Wall slip, Movement of free surfaces, Adhesion
 
 
 
 
 

See more related news

From solution to porous network: tuning the morphology and properties of cellulose aerogels Loris Gelas conducted his doctoral research in the research team S&P, under the supervision of […]
soutenance de thèse d'Antonio Potenciano Carpintero
Heterogeneous grain growth in the iron-based superalloy A-286 Antonio Potenciano Carpintero conducted his doctoral research in the MSR research team. He defends his PhD in Computational […]
soutenance de thèse de Franco Jaime
3D Characterization and grain growth simulation of polycrstalline nickel-based superalloy Franco Jaime conducted his doctoral research in the MSR research team, in the framework of the ANR […]
FE modeling of the spinning process of cryogenic hydrogen tank domes for future hydrogen-powered commercial aircraft Claude Korolakina conducted his doctoral research in the CSM research team, […]
Modeling chemical reaction kinetics, heat transfer and residual stresses in high optical index ophthalmic lenses Alan Taboré conducted his doctoral research in the the research teams, CFL and […]
Multi-Scale Study of Polyamide-12 Additive Manufacturing by L-PBF Process: from Experimental Characterization to Numerical Simulation Zhongfeng Xu conducted his PhD research in the S&P and […]