PhD Defence of Thibaut Devos

4 December 2024

Flux-corrected transport strategies for continuous finite element approximations of the compressible Euler equations on unstructured meshes

PhD defence of Thibaut Devos

Thibaut Devos conducted his PhD work in the CFL team under the supervision of Elie Hachem and Aurélien Larcher. He will defend his PhD in Computational Mathematics, High Performance Computing and Data, on December 4, 2024 in front of the following jury:

– M. Christophe BERTHON, Université de Nantes, Laboratoire de Mathématiques Jean Leray, UMR 6629, Reviewer
– Mme Anca BELME, Sorbonne Université, Institut Jean le Rond d’Alembert, Reviewer
– Mme Mireille BOSSY, Inria Sophia Antipolis – Méditerranée
– M. Aurélien LARCHER, Mines Paris, Université PSL, Centre de Mise en Forme des Matériaux (CEMEF)
– M. Elie HACHEM, Mines Paris, Université PSL, Centre de Mise en Forme des Matériaux (CEMEF)

Abstract:

This thesis aims to establish a digital framework for addressing industrial issues related to compressible flow. These flows, characterized by significant variations in density and pressure, pose challenges for modeling and numerical simulation due to the formation of shocks and other discontinuities. In this framework, it becomes imperative to develop new digital tools capable of accurately capturing these complex phenomena. This initiative responds to the need to develop new numerical solvers to enrich the range of methods currently employed within our team. These solvers will be designed to solve both scalar conservation laws and inviscid Euler equations, which describe the behaviors of compressible fluids.
The flux correction method for finite elements emerges as a promising approach to overcome these challenges. By first focusing on satisfying physical properties through numerical solutions, notably the conservation of physical quantities such as mass, energy, and entropy, this method ensures a coherent representation of physical phenomena. Once this step is accomplished, it then seeks to optimize the accuracy of results by minimizing numerical errors.

PhD defence of Thibaut Devos

Solution of a 2D Riemann problem for compressible Euler equations

 

Keywords: Fluid Mechanics, High Performance Computing, Flux Correction, Compressible Flows, Entropic Viscosity

 

 

See more related news

Evolution of the microstructure of the nickel-based superalloy γ-γ' René 65 during hot forging for the manufacture of turbine disks Federico Orlacchio conducted his PhD research in the MSR […]
Soutenance de thèse de Maya Wehbe
Modeling and characterization of nano-compliance effects for localized epitaxial growth of GaN on Si substrates Maya Wehbe conducted her PhD research at CEMEF in the framework of the ANR […]
Marc Bernacki médaille Portevin SF2M
We are very proud and thrilled by this new distinction, which rewards the work of a researcher who is totally committed to his missions and passionate about his scientific research […]
Multi-scale Modeling of Interfacial Instabilities and Bubble Dynamics: Application to Filling Flows in the Lost Foam Casting Process Jennifer El Zahabi conducted her doctoral research in the […]
Soutenance de doctorat de Kindness Isukwem
Impact and deformation of viscoplastic drops Kindness ISUKWEM conducted her PhD research in the CFL team under the supervision of Rudy Valette, Elie Hachem and Anselmo Soeiro Pereira. he will […]