Mot-Clé : thèse
Soutenance de thèse de Nitish Chandrappa
Nitish Chandrappa soutient sa thèse de doctorat en Mécanique Numérique et Matériaux le 8 février 2024.
Développement d’un cadre numérique en champ complet basé sur l’approche level-set pour simuler la transformation de phase diffusive à l’état solide dans les matériaux métalliques polycristallins
Nithis Chandrappa a réalisé sa thèse dans l’équipe MSR sous la direction de Marc Bernacki. Il soutient sa thèse de doctorat en spécialité doctorale “Mécanique Numérique et Matériaux” le 8 février 2024 devant le jury suivant :
– BRUCHON Julien, MINES Saint-Etienne, IMT, France École des Mines de Saint-Étienne Centre SMS
– MADEJ Lukasz, AGH University, Poland AGH University of Krakow WIMiIP
– KRILL III Carl, Ulm University, Germany
– CHARBONNIER Nicolas, ArcelorMittal
– BIGNON Madeleine, MINES Paris, France
– DE MICHELI Pascal, Transvalor SA, France
– BLAIZOT Jérôme, Aubert & Duval, France R&D
Résumé :
La structure intrinsèque des matériaux s’adapte en réponse à des stimuli externes. La capacité d’adaptation se caractérise par des évolutions microstructurales qui peuvent impacter les performances du matériau, soulignant l’importance de comprendre et de prédire l’évolution des microstructures. L’intégration de la modélisation numérique est indispensable pour mieux comprendre ces phénomènes complexes. La digitalisation des procédés d’ingénierie des matériaux est la force motrice qui permet de dessiner les matériaux de demain. Les avancées récentes des ressources computationnelles ont stimulé l’émergence d’une demande de modèles numériques mésoscopiques, permettant des descriptions réalistes des aspects évolutifs. Au cours du mise en forme à chaud des métaux comprenant une grande déformation plastique, l’évolution des alliages métalliques est caractérisée par une interaction complexe de multiples phénomènes simultanés qui déterminent leur microstructure. Actuellement, les prédictions numériques mettent l’accent sur les évolutions microstructurales monophasiques ou isolent les transformations de phase, en négligeant souvent les contributions d’autres phénomènes concomitants. Cette approche restrictive pourrait empêcher une meilleure compréhension de l’évolution de la microstructure. Une formulation numérique en champ complet basée sur l’approche level-set avec un cadre cinétique généralisé adapté aux polycristaux métalliques biphasés est donc proposée dans ce travail. Ce schéma cinétique global est capable de tenir compte de diverses transformations microstructurales, y compris la transformation de phase diffusive à l’état solide, la recristallisation et la croissance de grain. L’approche level-set permet de simuler efficacement la recristallisation et la croissance de grains dans le cadre d’une grande déformation plastique. Cependant, son potentiel pour traiter la transformation de phase diffusive à l’état solide reste peu approfondi. L’objectif principal de ce travail est donc de simuler la transformation de phase diffusive à l’état solide dans les polycristaux métalliques en utilisant le modèle numérique proposé afin d’explorer les possibilités de l’approche level-set dans ce contexte. Il est démontré que le modèle numérique reproduit efficacement les comportements physiques attendus, notamment pour la décomposition de l’austénite dans les aciers. Ce modèle numérique est évalué par rapport à un modèle semi-analytique de pointe. Le potentiel du cadre numérique proposé pour reproduire le caractère de la transformation de phase dans les microstructures polycristallines complexes est mis en évidence. La versatilité du modèle pour intégrer facilement d’autres évolutions complexes est également présentée.
Évolution de la microstructure lors d’une transformation de phase diffusive de la phase gamma vers la phase alpha
Mots-clés : Méthode EF, Transformation de phase diffusive, Décomposition de l’austénite, Métallurgie, Evolution de microstructure
Soutenance de thèse de Victor Claverie
Victor Claverie soutient sa thèse de doctorat en Mécanique Numérique et Matériaux le 17 octobre 2023.
Etude du comportement thermo-mécanique et de la rupture d’oxyde de fer à température ambiante et à haute température
Victor Claverie a fait sa thèse dans l'équipe PSF sous la direction de Pierre Montmitonnet, Karim Inal et Alain Burr. Il soutient sa thèse de doctorat dans la spécialité doctorale "Mécanique Numérique et Matériaux" le 17 octobre 2023 devant le jury suivant (sous réserve de l'accord des rapporteurs) :

Mots-clés : oxydes de fer, décalaminage, indentation, simulation numérique, X-Ray Diffraction, laminage à chaud
Soutenance de thèse de Jesus Oswaldo Garcia Carrero
Jesus Oswaldo Garcia Carrero soutient sa thèse de doctorat en Mécanique Numérique et Matériaux le 11 octobre 2023.
Estimateurs d’erreurs et remaillage anisotrope adaptatif en modélisation électromagnétique couplée 3D – Application aux procédés de fabrication avec couplage électromagnétique.
Jesus Oswaldo Garcia Carrero a réalisé sa thèse dans l'équipe CSM sous la direction de François Bay en collaboration avec Transvalor. Il soutient sa thèse de doctorat dans la spécialité doctorale "Mécanique Numérique et Matériaux" le 11 octobre 2023 devant le jury suivant (sous réserve de l'accord des rapporteurs) :
Résumé :
Mots-clés : Modélisation numérique, Eléments finis, Electromagnétisme, Adaptation du maillage, Estimateur d'erreurs, Couplages multiphysiques
Soutenance de thèse de Coraline Chartier
Coraline Chartier soutient sa thèse de doctorat le 17 mars 2023
Aérogels et cryogels à base de chitosane pour le traitement des plaies
Coraline Chartier a réalisé sa thèse dans l'équipe BIO sous la supervision de Tania Budtova et Sytze Buwalda, côté CEMEF et de Benjamin Nottelet pour l'Institut de Biomolécules Max Mousseron. Elle soutient sa thèse en spécialité doctorale "Mécanique Numérique et Matériaux" le 17 mars 2023 devant le jury suivant :
– Audrey Tourette, CIRIMAT Université de Toulouse 3, rapporteur
– Luc Picton, Laboratoire PBS Université de Rouen, rapporteur
– Yves Grohens, IRDL, Université Bretagne Sud, examinateur
– Carlos Alberto Garcia Gonzalez, Universidade de Santiago de Compostella, examinateur
– Hélène Van den Berghe, Institute of Biomolecules Max Mousseron (IBMM), examinatrice
Résumé :
Le vieillissement de la population engendre des problèmes de santé qui constituent des défis médicaux et économiques majeurs pour les Etats. Les plaies chroniques sont l’un d’entre eux. Ce sont des plaies qui se trouvent au stade inflammatoire et qui ne présentent aucun signe de cicatrisation après 6 semaines. Elles peuvent entrainer des complications allant jusqu’à la mort. Pour traiter ces plaies, des pansements avec des propriétés améliorées peuvent être développés, par exemple, des pansements à base de matériaux poreux. Un matériau poreux est perméable aux gaz comme l’O2 et le CO2, il permet d’absorber de larges quantités d’exsudat de la plaie et, selon le matériau choisi, améliore simultanément la cicatrisation. Dans ce sens, les aérogels et les cryogels sont des matériaux attrayants car ils présentent une haute porosité (≥ 90%) qui est ouverte et interconnectée. Les structures sont obtenues en retirant le solvant de gels, soit par séchage au CO2 supercritique pour préserver la structure, ce qui donne des « aérogels », soit par lyophilisation pour obtenir des matériaux poreux nommés « cryogels », constitués de macropores. Avec l’objectif de développer un pansement pour plaies chroniques, le chitosane, qui est un polymère naturel, a été choisi dans ces travaux pour ses propriétés uniques. Alors que la plupart des matériaux utilisés dans des pansements jouent un rôle passif dans la cicatrisation, le chitosane possède des propriétés antimicrobiennes et participe à la cicatrisation à travers plusieurs mécanismes tels que l’amélioration de l’hémostase et un meilleur remodelage au cours des phases inflammatoire et proliférative. De plus, il peut être utilisé comme support avec de nombreux principes actifs pour la cicatrisation. Le chitosane poreux est déjà utilisé dans le domaine biomédical en tant que pansement hémostatique en cas de situations léthales mais pas encore pour des traitements de plaies à moyen ou long terme. Malgré l’intérêt porté aux aérogels de chitosane pour une application biomédicale, aucun de ces derniers n’est actuellement commercialisé à notre connaissance. L’objectif de ces travaux est de définir une gamme de propriétés à viser et ensuite de comprendre la corrélation entre le procédé et la structure et propriétés finales du matériau, afin de développer un matériau poreux avec des caractéristiques adaptées à la cicatrisation des plaies. A cette fin, suite à une étude de la littérature, ce manuscrit décrit l’étude de la cinétique de coagulation de solutions de chitosane, étape importante du procédé qui permet d’obtenir un gel à partir d’une solution, et propose un modèle de prédiction de l’évolution des propriétés mécaniques du gel lors de la coagulation à partir de données optiques. Dans un second temps, l’influence des paramètres du procédé sur la morphologie et les propriétés des matériaux poreux finaux est détaillée. Enfin, les aérogels et cryogels de chitosane optimisés sont évalués in vitro en rapport avec l’application via des études de chargement et de libération de principes actifs, en mettant l'accent sur l’impact de ces derniers sur la production de collagène.
Mots-clés : Aérogel, cryogel, chitosan, matériaux poreux, libération contrôlée de principe actif, pansements pour plaies
Soutenance de thèse d’Ilusca Soares Janeiro
Ilusca Soares Janeiro soutient sa thèse de doctorat en Mécanique Numérique et Matériaux le 30 juin 2023
Évolutions des précipités de phase γ' au cours des opérations de forgeage de l’alliage René 65
Ilusca Soares Janeiro a effectué sa thèse de doctorat sous la direction de Nathalie Bozzolo, équipe MSR, et de Jonathan Cormier, Institut Pprime. Elle soutient sa thèse en spécialité doctorale "Mécanique Numérique et Matériaux" le 30 juin 2023 devant le jury suivant :
Résumé :
Mots-clés : superalliage base nickel, microstructure y-y', précipitation γ', forgeage à chaud, recristallisation
Soutenance de thèse de Tianqi Huang
Tianqi Huang soutient sa thèse de doctorat en Mécanique Numérique et Matériaux le 28 juin 2023.
Caractérisation et modélisation du comportement mécanique de PE-vitrimères.
Tianqi Huang a réalisé sa thèse sous la direction de Jean-Luc Bouvard, équipe MPI, et de Yannick Tillier, équipe CSM. Il soutient sa thèse de doctorat en spécialité doctorale "Mécanique Numérique et Matériaux" le 28 juin 2023 devant le jury suivant :
Résumé :
Dans cette thèse nous nous intéressons à la caractérisation du comportement de plusieurs matériaux polymères basés sur le polyéthylène. Afin d’évaluer notamment leurs propriétés de recyclage, nous comparons, avant et après vieillissement, les comportements de plusieurs vitrimères (avec des taux de réticulation différents) à ceux d’un polymère thermoplastique (HDPE) et d’un polymère thermodurcissable (PEXb). Le but étant de mieux appréhender la relation entre la microstructure et les propriétés de ces matériaux, une modélisation de ces comportements a également été proposée à l’aide d’un modèle physique. Ses paramètres ont pu être identifiés grâce aux nombreuses observations expérimentales réalisées à différentes échelles : la structure cristalline (échelle microstructurale) a été caractérisée par DSC et rayons X, les propriétés dynamiques (échelle mésoscopique) grâce à des essais de DMTA et à une analyse rhéologique, et le comportement mécanique (échelle macroscopique) grâce à des essais de traction et de fluage. Les conditions d’essais pour caractériser le comportement mécanique en grande déformation ont été choisies en suivant la méthodologie dite « de la vitesse de déformation équivalente à une température de référence » (prise à la température de transition α). L’effet dual de la température et de la vitesse de déformation est ainsi pris en compte. A l’état initial (non-vieilli), le taux de cristallinité évolue peu entre les différents types de polymères. En revanche, l’épaisseur des lamelles cristallines et les propriétés viscoélastiques sont très dépendantes du type de polymère étudié. L’application de l’équivalence temps-température (validée ici y compris dans le cas de grandes déformations), en-dessous de la température de fusion, a conduit à une courbe maîtresse unique pour les différents polymères de l’étude. Ce n’est pas le cas au-delà de cette température où seuls les vitrimères et le PEXb présentent un plateau caoutchoutique. Pour le HDPE et le vitrimère, le protocole de vieillissement entraîne une scission des chaînes qui conduit à une diminution du poids moléculaire (Mw). Cela impacte directement les propriétés observées en DMTA ainsi que le comportement mécanique en grande déformation. Pour le vitrimère et le PEXb, l’effet du vieillissement se fait ressentir plus tard que pour le HDPE lors d’un essai de fluage. Mais contrairement au PEXb, cet effet peut être effacé dans le cas du vitrimère en le chauffant au-delà de la température de transition α’. Enfin, le modèle utilisé permet de reproduire les comportements mécaniques observés expérimentalement pour chaque type de PE et démontre ainsi sa capacité à prendre en compte les spécificités des différents réseaux de chaînes qui les caractérisent. En conclusion, les matériaux vitrimères montrent des propriétés thermomécaniques globalement proches de celles du HDPE et du PEXb mais se démarquent de ce dernier grâce à leur haut potentiel de recyclage.
Mots-clés : Vitrimère, Microstructure, Equivalence temps-température, Comportement mécanique, Vieillissement, Modélisation