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Summary of the project: Damage is a particular form of anomaly in material forming. These anomalies 
come from materials microstructure heterogeneity that drives ductile damage mechanisms. We propose 
to combine deep learning for anomaly detection and mechanical modeling of damage. This work is 
limited to the use of synthetic data produced with mechanical models calibrated in the context of previous 
work in materials mechanics. However, these models remain imperfect, in particular for dealing with 
recycled materials or, in general, materials with a high variability of their physical properties. In this case, 
an anomaly may be caused by unusual properties or an unsuitable mechanical model. The anomalies 
will be identified as cases out-of-distribution of so-called normal data. The objective of this project is to 
develop: (i) self-supervised learning of a latent space of normal data, (ii) an anomaly detection task 
using this latent space, (iii) a final stage of scientific explanation of the causes of anomalies based on 
explainable AI. All this in the context of large deformations of point cloud.    
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1. Context of point cloud deformations and main objectives  

Scientific machine learning (SciML) is an interdisciplinary field that combines physics-based modeling 

and scientific computing. In this proposal, we address the following limitations of continuum damage 

models for metal forming applications [Tekkaya et al., 2020] that are based on partial differential 

equations and scientific computing: (i) Such physics-based models, with observational data as inputs, 

are not designed to detect anomalies or modeling errors in real time, even using high performance 

computing facilities. (ii) Predicting large shape changes of the domain in which PDEs are set up requires 

complex shape descriptors such as mesh adaptation in finite element models. Such adaptive descriptors 

hinder the definition of a common ambient space for an extensive statistical analysis of model’s 

predictions.  

In this project, we focus our attention on out-of-distribution (OOD) anomaly detection in a statistical 

framework [Yang et al, 2024]. Our target application is to incorporate more recycled material with 

stochastic properties into forming processes of aluminum. When considering recycled material, 

understanding damage is a crucial issue to produce high quality components. Generally speaking, 

recycling materials makes physics properties of materials more stochastic. For aluminum alloys this 

conducts to higher contents of intermetallic particles or presence of particles cluster who influence 

significantly ductile damage mechanisms [Hannard et al., 2016]. To facilitate the definition of a common 

ambient space, this project considers a point cloud representation [Guo et al, 2020], [Saranti et al., 2024] 

of shapes and internal states, for both observational data and synthetic data computed by physics-based 

models. The success of this project will be evaluated in terms of its ability to integrate recent advances 

in deep learning for point clouds; its ability to detect simulated damage with stress states or geometric 

defects that do not form part of the training domain.  

In this project, the high dimensional data that are the solution of a PDE are a priori down-sampled to a 

reasonable dimension, about 1000, to facilitate machine learning on 3D point clouds. Data clustering 

could be a solution for this down-sampling. This down-sampling step is also an answer to another major 

challenge: the management of huge amounts of data and the environmental impact, which raises 

questions of sustainability. 

Let us refine the details of this project. Our objective is to develop a scientific deep learning approach 

to anomaly detection in the context of large deformations of point clouds [Beetz et al., 2023], while 

maintaining a high level of scientific explainability. It is a contribution to Human-Centered Artificial 

Intelligence [Riedl, 2019], where an AI system helps scientists understand AI predictions in a reasonable 

time. In this proposal, mechanical submodeling and explainable AI are coupled to understand AI 

predictions [Tan et al., 2022]. It is a contribution to the development of new, reliable and robust AI 

methods through hybridization with knowledge specific to mechanics of materials. It is a revolutionary 

objective. Anomaly detection will be a downstream task using the latent space of a pre-trained model 

for point cloud deformations. The physics-based model used for the generation of the train dataset is 

referred to as high-fidelity model (HF-model). This HF-model will be based on Forge finite element 

simulations which includes enhanced coupled/uncoupled damage models [Bouchard et al. 2011]. Such 

macroscopic damage models often fail at including microstructure anomalies such as the presence of 

oriented particles cluster in critical areas that can lead to premature failure [Bouchard et al. 2008].  

We consider the following multi-modal data: Input data of the HF-model including shape description, 

denoted by Xin; the down-sampled prediction of the HF-model, denoted by Xout. Xin includes 

observational data such as, but not limited to, a point cloud on the surface after deformation of object. 

The multimodal data (Xin, Xout) are conventional data in surrogate modeling of physics based model. 

Being related to the solution of a PDE, this data contains sufficient information to design a submodel 

around a given zone of interest [Launay et al. 2022]. 

The train dataset will contain normal data related to normal point cloud deformations understood using 

a normal HF-model, with low damaged materials. In this dataset, we will consider various constitutive 

models of different aluminum alloys, that are available in scientific publications and datasets.  Normality 

will be precisely defined according to the application domain. We assume that all anomalies, or their 

effect, can be observed on 3D point cloud of object surface. A statistical distance to the latent space will 

serve as an OOD anomaly detection. No anomaly will be a priori defined in that context. The scientific 

explanation of anomaly detection will be a complementary downstream task. Explaining how data is 

processed in inference time through the layers of a neural network is beyond the scope of this project. 

https://www.transvalor.com/en/blog/forge-for-open-die-forging
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The explanation aims to answer the following questions: Why was a data instance detected as 

abnormal/normal? Is it the HF-model or the input data that is causing the anomaly? Can we identify 

where the anomaly lies in the input data or in the HF-model used to generate the training set? Is the 

anomaly related to damage of the material? The submodel, equipped with boundary condition from 

machine learning, will guide the human explanation of anomaly detection. The subdomain of the 

submodel, will be generated by using Masked autoencoders [Zhang et al, 2022] and eXplainable AI 

(XAI) [Mulawade et al., 2024]. The proposed scientific explanation process is similar to a digital twining 

of deep neural network prediction by using mechanical submodels. Here the submodel aims to be a 

more explainable twin, not a faster digital twin. A good understanding of the data is achieved when the 

submodel outputs match the anomalous data as a result of submodel calibration.    

2. Reference  

[Beetz et al., 2023] Beetz M., Banerjee A. , Ossenberg-Engels J.  & Grau V. (2025). Multi-class point 

cloud completion networks for 3D cardiac anatomy reconstruction from cine magnetic resonance 

images. Medical Image Analysis, 90, 102975.  

[Bouchard et al., 2008] Bouchard, P.-O. Bourgeon, L., Lachapele, H., Maire, E., Verdu, C., Forestier, 

R. and Logé, R. E. (2008), On the influence of particles distribution and reverse loading on damage 

mechanisms of ductile steel alloys, Mater. Sci. Engng. A, 496: 223–233. 

[Bouchard et al. 2011] Bouchard, P.-O., Bourgeon; L., Fayolle, S. and Mocellin, K. (2011), An 

enhanced Lemaitre model formulation for materials processing damage computation, Int. J. Mater. 

Form., 4(3): 299-315. 

[Guo et al, 2020] Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., & Bennamoun, M. (2020). Deep learning 

for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine intelligence, 43(12), 

4338-4364.  

[Hannard et al., 2016] Hannard F., Pardoen, T.,  Maire, E., Le Bourlot, C., Mokso, R. and Simar, A. 

(2016), Characterization and micromechanical modelling of microstructural heterogeneity effects on 

ductile fracture of 6xxx aluminium alloys,  Acta Materialia, 103, 558–572. 

[Launay et al., 2022] Launay H.,  Ryckelynck D., Lacourt L., Besson J., Mondon A & Willot F. (2022), 

Deep multimodal autoencoder for crack criticality assessment, International Journal for Numerical 

Methods in Engineering, 123, 6, 1456-1480. 

[Mulawade et al., 2024] Mulawade, R. N., Garth, C., & Wiebel, A. (2024). Explainable Artificial 

Intelligence (XAI) for Methods Working on Point Cloud Data–A Survey. IEEE Access  

[Riedl, 2019] Riedl M.O. (2019), Human-centered artificial intelligence and machine learning. Human 

Behavior and Emerging Technologies, 1(1), 33-36.  

[Saranti et al., 2024] Saranti, A., Pfeifer, B., Gollob, C., Stampfer, K., & Holzinger, A. (2024). From 3D 

point‐cloud data to explainable geometric deep learning: State‐of‐the‐art and future challenges. Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(6), e1554.  

[Tan et al., 2022] Tan, H., & Kotthaus, H. (2022). Surrogate model-based explainability methods for 

point cloud NNs. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer 

Vision (pp. 2239-2248).  

[Tekkaya et al. 2020]  Tekkaya, A. E., Bouchard, P.-O., Bruschi, A. and Tasan, S. S. (2020), Damage 

in metal Forming, CIRP Annals, 69, 2, 600–623. 

[Yang et al, 2024] Yang, J., Zhou, K., Li, Y., & Liu, Z. (2024). Generalized out-of-distribution detection: 

A survey. International Journal of Computer Vision, 132(12), 5635-5662.  

[Zhang et al, 2022] Zhang, R., Guo, Z., Gao, P., Fang, R., Zhao, B., Wang, D., ... & Li, H. (2022). 

Point-M2AE: multi-scale masked autoencoders for hierarchical point cloud pre-training. Advances in 

neural information processing systems, 35, 27061-27074.  

3 How to apply 

 

Send the following documents to david.ryckelynck@minesparis.psl.eu 

· a CV; 

· a one-page cover letter describing ypur ambitions for the above PhD subject and the 

relevance of the application in relation to the description of the subject; 

· a copy of your latest qualifications
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