

Phd Position 2023- CEMEF

TITLE	3D crack propagation in a CMO/CMO interface at the mesoscopic scale
Project acronym	
Key-words	CMO composite, crack propagation, numerical modeling
The global objective of work	The thesis aims to study and simulate the 3D crack propagation in a CMO/CMO interface, to feed a macroscopic behavior law to model composite delamination.
Context	The European Commission has set itself the objective of reducing the European Union's greenhouse gas (GHG) emissions by more than 80% by 2050, compared with 1990 levels, and even aiming for carbon neutrality by that date. In the aeronautics industry, one of the ways to achieve these objectives is to reduce the weight of structures, thereby reducing fuel consumption. The use of composite materials to manufacture structural parts is one way to achieve this. On the LEAP engine developed by Safran Aircraft Engines, 3D woven composites (CMOT3D) are used to manufacture the blades and fan case. In the case of the LEAP casing, the composite preform is wound several times around an axis before the polymer resin is injected. Interfaces are thus created between each ply of the composite. These interfaces, essentially made of resin, are the privileged zones for the initiation and propagation of cracks during the damage of the part. The characterization and modeling of the phenomena leading to these damages are therefore major development axes to optimize the dimensioning of such parts.
Detailed presentation with figure(s)	The goal of this thesis is to study and simulate the 3D crack propagation in a CMO/CMO interface, to feed a macroscopic behavior law of the composite delamination. This multi-scale approach to damage, presented in Figure 1, requires achieving several objectives.

Location	 CEMEF, MINES ParisTech, Sophia-Antipolis (06), France SAFRAN sur le site de Villaroche, Rond-Point René Ravaud, 77 550 MOISSY- CRAMAYE
CEMEF team(s)	Physical Mechanics of Industrial Polymers (MPI) Computational Solid Mechanics (CSM)
Supervisor(s)	<u>CEMEF:</u> J.L. Bouvard (jean-luc.bouvard@minesparis.psl.eu) D. Pino Munoz (<u>daniel.pino_munoz@minesparis.psl.eu</u>) <u>SAFRAN AIRCRAFT ENGINE:</u> F. Rasselet (<u>francois.rasselet@safrangroup.com</u>) E. Marin (edouard.marin2@safrangroup.com)

To apply: You can only apply online by filling in the CEMEF online form on :

https://applyfor.cemef.mines-paristech.fr/phd/

